Akira KONAKA TRIUMF September 21, 2002 @TRIUMF 5YP town hall meeting

The JHF-Kamioka neutrino project

- Roadmap of the neutrino physics
- The JHF-Kamioka project
- Long baseline neutrino activities in Canada
- TRIUMF experties and possible contributions
- Summary

Impact of the discovery of neutrino mass

• Small ν mass \rightarrow new physics scale

$$\frac{m_{\nu_3}}{m_{\tau}} = \frac{\sqrt{3 \times 10^{-3} eV^2}}{1.3 GeV} = 4 \times 10^{-11}$$

⇒ Grand Unification and/or extra dimensions

• Grand Unification (GUT)

Gauge Unification at $10^{16} GeV$

Baryon asymmetry of the universe

⇒ Majorana neutrino decay in GUT(Leptogenesis)

• Extra dimensions in space-time (string theory)

Gravity and quantum mechanics \Rightarrow extra dimensions (string)

Grand Unification and neutrinos

• See-saw mechanism

Majorana mass: ν_R is GUT singlet $\Rightarrow M_R \sim M_{GUT}$

Dirac mass: $m_D \nu_L \nu_R$ by Higgs $\Rightarrow m_D \sim v = 250 GeV$

$$(\nu_L \ \nu_R) \begin{pmatrix} 0 & m_D \\ m_D & M_R \end{pmatrix} \begin{pmatrix} \nu_L \\ \nu_R \end{pmatrix} \stackrel{\text{diagonilize}}{\Rightarrow} m_{\nu} = \frac{m_D^2}{M_R}$$

$$m_{\nu}^2 = 3 \times 10^{-3} \Rightarrow M_{GUT} \sim M_R = \frac{m_D^2}{m_{\nu}} \sim 5 \times 10^{15} GeV$$

Consistent with the Gauge unification!

• **GUT** explored by neutrinos

- ν mass $\Rightarrow M_R$: energy scale of GUT
- CP violation ⇒ Leptogenesis

Extra-dimensions and neutrinos

• Extra Dimensions implied by ν mass

 $\nu_R(\text{singlet})$ in the bulk space

 \Rightarrow small overlap between ν_R and $\nu_L \equiv$ small ν mass

- Extra dimensions explored by neutrinos
 - Oscillation pattern \equiv interaction between ν_R and ν_L Explore extra-dimensional space by neutrino oscillation
 - CPT violation: $\Delta m_{\nu} \neq \Delta m_{\bar{\nu}}$? \Leftarrow Due to break down of Lorenz invariance?
 - Sterile neutrinos (K-K mode)?
 - \Rightarrow Comparison between NC and CC, Unitarity test

Physics of neutrino oscillations

• Neutrino oscillation in 2 generations

$$P(\nu_e \to \nu_\mu) = |sin\theta cos\theta(e^{-iE_1t} - e^{-iE_2t})|^2$$
$$= sin^2 2\theta sin^2 \frac{1.27\Delta m^2 L(km)}{E(GeV)}$$

$$\Delta m^2 (eV^2)$$
 L(km)/E(GeV)
Atmospheric $\sim 3 \times 10^{-3}$ 1300
Solar (LMA) $\sim 5 \times 10^{-5}$ 10⁵
LSND ~ 1 4

3 generation effect

• Lepton mixing matrix (MNS matrix)

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix} \quad \begin{array}{c} \text{Leptonic CKM} \\ \text{(MNS matrix)} \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & e^{i\delta_{CP}} \sin \theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{CP}} \sin \theta_{13} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$Atmospheric \qquad New \qquad Solar$$

• Golden neutrino oscillation mode

"Road-map" of Neutrino oscillations

1. LSND: $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ at $\Delta m^{2} \sim 1 eV^{2}$

• Status:

- LSND-DAR: $P = (0.264 \pm 0.067 \pm 0.045)\%$
- KARMEN: no excess, some parameter space left.
- Beyond 3 generation MNS matrix: CPT violation?
- Next Step: mini-BooNE (June, 02)
 - (a) mini-BooNE $(\nu_{\mu}, \bar{\nu}_{\mu})$ does not see the oscillation \Rightarrow the case closed
 - (b) Surprise: mini-BooNE does see the oscillation ⇒ Follow-up experiments to study this.

2. $\Delta m_{12}, \theta_{12}$: Solar

• Status:

- Deficit is observed by Ga, Cl, H_2O, D_2O experiments
- Flavor oscillation is confirmed by SNO (> 5σ)
- LMA is favoured (99.5%CL)
- Next Step: KamLAND:reactor $\bar{\nu}_e \to \bar{\nu}_\mu$ (Jan. 02)
 - (a) KamLAND confirms LMA signal
 - ⇒ Precise oscill. pattern measurement (KamLAND)
 - \Rightarrow Spectral distortion in LMA (7Be : Borexino, KamLAND)
 - \Rightarrow Study of the solar model (${}^{7}Be$, p-p neutrinos)
 - (b) Surprise: KamLAND do not see oscillation
 - \Rightarrow ⁷Be: Borexino, KamLAND

3. Δm_{23} , θ_{23} : Atmospheric

• Status:

- Deficit up/down asymm. observed by Super-K
- Consistent with $\nu_{\mu} \rightarrow \nu_{\tau}$ (Super-K)
- Confirmed (99.3%CL) by K2K-I
- Oscillation pattern seen at 85%CL (K2K-I)

• Next Step:

```
\nu_{\mu} disappearance: K2K-II(Nov. 02)/MINOS(2005)

\nu_{\mu} \rightarrow \nu_{\tau} appearance: ICARUS/OPERA(2006)
```

- (a) Confirmation of the SK/K2K-I results
 - \Rightarrow Precision test of the oscillation framework oscill. pattern, NC/CC, CPT \Leftarrow **JHF-SK(2007)**
- (b) Surprise: Disagreement with SK/K2K-I
 - \Rightarrow Precise and high statistics \Leftarrow **JHF-SK**

4. Δm_{13} , θ_{13} : "The next step"

• Status:

Reactor ν_e disappearance (CHOOZ): $\sin^2 2\theta_{13} < 0.1$

• Nest step:

 $\nu_{\mu} \rightarrow \nu_{e}$ appearance (**JHF-SK**, NuMI off-axis)

• Future:

- CP High intensity/large detector
 JHF-HyperK, and similar ones in US/Europe
- Matter effect: Very long baseline
 JHF-Korea, BNL-Homestake, FNAL-SK

• Further down the road:

Neutrino factory, β neutrino beam

Letter of Intent: June 5, 2001 (hep-ex/0106019)

The JHF-Kamioka neutrino project

Y. Itow¹, T. Kajita¹, K. Kaneyuki¹, M. Shiozawa¹, Y. Totsuka¹, Y. Hayato², T. Ishida², T. Ishii², T. Kobayashi², T. Maruyama², K. Nakamura², Y. Obayashi², Y. Oyama², M. Sakuda², M. Yoshida², S. Aoki³, T. Hara³, A. Suzuki³, A. Ichikawa⁴, T. Nakaya⁴, K. Nishikawa⁴, T. Hasegawa⁵, K. Ishihara⁵, A. Suzuki⁵, A. Konaka⁶

Abstract

The JHF-Kamioka neutrino project is a second generation long base line neutrino oscillation experiment that probes physics beyond the Standard Model by high precision measurements of the neutrino masses and mixing. A high intensity narrow band neutrino beam is produced by secondary pions created by a high intensity proton synchrotron at JHF (JAERI). The neutrino energy is tuned to the oscillation maximum at ~1 GeV for a baseline length of 295 km towards the world largest water Čerenkov detector, Super-Kamiokande. Its excellent energy resolution and particle identification enable the reconstruction of the initial neutrino energy, which is compared with the narrow band neutrino energy, through the quasi-elastic interaction. The physics goal of the first phase is an order of magnitude better precision in the $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation measurement $(\delta(\Delta m_{23}^2) = 10^{-4} \text{ eV}^2 \text{ and } \delta(\sin^2 2\theta_{23}) = 0.01)$, a factor of 20 more sensitive search in the $\nu_{\mu} \rightarrow \nu_{e}$ appearance ($\sin^{2} 2\theta_{\mu e} \simeq 0.5 \sin^{2} 2\theta_{13} > 0.003$), and a confirmation of the $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation or discovery of sterile neutrinos by detecting the neutral current events. In the second phase, an upgrade of the accelerator from 0.75 MW to 4 MW in beam power and the construction of 1 Mt Hyper-Kamiokande detector at Kamioka site are envisaged. Another order of magnitude improvement in the $\nu_{\mu} \rightarrow \nu_{e}$ oscillation sensitivity, a sensitive search of the CP violation in the lepton sector (CP phase δ down to $10^{\circ} - 20^{\circ}$), and an order of magnitude improvement in the proton decay sensitivity is also expected.

 $^{^{\}rm 1}$ Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582, Japan

² Inst. of Particle and Nuclear Studies, High Energy Accelerator Research Org. (KEK), Tsukuba, Ibaraki 305-0801, Japan

 $^{^3}$ Department of Physics, Kobe University, Kobe, Hyogo 657-8501, Japan

⁴ Department of Physics, Kyoto University, Kyoto 606-8502, Japan

Department of Physics, Tohoku University, Sendai, Miyagi, 980-8578, Japan

⁶ TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada, V6T 2A3

The JHF project

JAERI@Tokai (60km N.E. of KEK)

Under construction: Beam commissioning in 2006

	JHF	MINOS	K2K
E(GeV)	50	120	12
Intensity $(10^{12}ppp)$	330	40	6
Rate (Hz)	0.292	0.53	0.45
Power (MW)	0.77	0.41	0.0052

$10^{21} POT/year$

Beam power is anticipated to be upgraded up to 4MW (upgrades in RF/power supplies and the barrier bucket scheme)

Principles of the JHF-Kamioka project

Discovery of Z^0 (SPS)

- \Rightarrow Precision measurements of EW int. at Z^0 pole (LEP) Discovery of ν oscillation (Super-Kamiokande)
- \Rightarrow Precision measurements of ν oscil. at oscil. max.
- The highest intensity proton accelerator; JHF
- The largest water Čerenkov detector; Super-Kamiokande Excellent for $E_{\nu} < 1 GeV$
- Narrow band beam at oscillation max; Off-axis beam L=300km $\Rightarrow E_{\nu}$ =(0.4-1.0)GeV
- Reconstruction of the neutrino energy; QE reaction Works best for $0.5 GeV < E_{\nu} < 1 GeV$

ν_{μ} disappearance

Physics goal: Test of the oscillation framework

• Precise oscillation pattern study

- Does ν_{μ} disappearance follow the oscillation curve? Sterile? Extra dimension? New interactions?
- Precision measurement of θ_{23} and $\Delta m_{23}^2 \sin^2 2\theta_{23} < 1? \sin^2 2\theta_{23} = 1??$, or $\sin^2 2\theta_{23} > 1???$
- Comparison of θ_{23} and Δm_{23}^2 between ν_{μ} and $\bar{\nu}_{\mu}$ (CPT)
- NC/CC ratio: Admixture of sterile neutrinos?

Neutrino oscillation has been presenting surprises An excellent place to hunt for new physics

$\nu_{\mu} \rightarrow \nu_{e}$ appearance (U_{e3})

• Signal: $\nu_e(\text{far})/\nu_\mu(\text{near})$ Expected to appear at the ν_μ disappearance dip.

• Sensitive to $\sin^2 2\theta_{\mu e} > 0.003$

Future of JHF-Kamioka

- Hyper-Kamiokande detector (The 2nd phase)
 - -Water Čerenkov technology allows 1M
ton detector

- Extend $\sin^2 2\theta_{13}$ down to 10^{-3}
- CP violation measurement for $\delta_{CP} > 20^{\circ}$
- $-\times 10$ better sensitivity in proton decay
- Detector site identified and R&D started

Prospects

2000 -

• JHF project approved (December)

2001 -

- JHF construction started (April)
- Release of the Letter of Intent (hep-ex/0106019) Conceptual design of the JHF-Kamioka project

2002 -

- International JHF-SK meeting (March)
- Grant request of the ν beamline (June) \Rightarrow approval expected in Dec.2002 or 2003
- Proto-collaboration meeting (September 26-29)
- Civil construction of the ν -beamline starts (October)
- Updted LOI (December)

2006 –

• Comissioning of the JHF accelerator

2007 -

• Start taking data of the first phase of JHF-SK

Participating institutions at JHF-SK meeting in Kyoto on March 9, 2002

• Japan

ICRR, KEK, Kyoto, Tokyo

• Korea

Seoul, Chonnam

• Canada

TRIUMF

• US

Argonne, Boston, Fermilab, Los Alamos, Pennsylvania, Rochester, StonyBrook UC Berkeley/LBNL, UC Irvine, Washington

• France

Lyon, Saclay

• Italy

Napoli, Rome, Padova

• Switzerland

Geneva

• UK

Ratherford-Sussex

Physics Opportunities

- ν_{μ} disappearance: search for physics beyond MNS
 - Precise measurement of the oscillation pattern
 - NC/CC ratio (sterile neutrino search)
 - CPT (ν_{μ} vs. $\bar{\nu}_{\mu}$ disappearanves
- ν_e appearance: $\theta_{13} \Rightarrow$ CP, Matter effect
- Precision measurement of ν -nucleon/nucleus scattering
 - $-\nu$ cross sections for ν oscillation and proton decay
 - Weak form factors (strangeness in nucleon)
 - Nuclear/hadron physics
- Super-Kamiokande physics
 - Solar neutrinos
 - Atmospheric neutrinos
 - Supernova neutirnos
 - Proton decays
- Short baseline experiment with 2km detector (If mini-BooNE confirms LSND results)
- K2K physics

Interests in the community

- "High priority" rating in the LRPC report
- "Workshop on future opportunities in ν physics"
 - \Rightarrow Long baseline ν working group formed (\sim 30 members)
 - \Rightarrow NSERC-IOF grant awarded
 - \Rightarrow NSERC grant request for the JHF-SK near detector R&D
- US Long range plan report to HEPAP

 The JHF is likely to be the first step in an international program of superbeam facilities...
- One of the 4 major topics at the ICFA seminar
 - Neutrino, Linear collider, Hadron collider, Particle Astrophysics
- JHF-SK inspired efforts around the world
 - Fermilab: NuMI off-axis beam
 - BNL: Off-axis beam to Homestake off-axis beam
 - CERN: Off-axis beam to Italy

Activity of the neutrino working group

- "High Priority" rating by the FYPC
- "Workshop on future opportunities in neutrino physics"
- Working group formed in Dec. 2001
- Bi-weekly video/phone meetings and Email discussions
 - http://nu.triumf.ca
 - Initial R&D discussion on JHF ν beam
 - Simulation studies of JHF-SK and NuMI off-axis
 - NSERC-IOF grant awarded for travel and workshops
- International JHF-SK meeting in March in Kyoto
- Future NuMI workshop on May2-4
- First internal workshop on May 6 at York university JHF-SK selected as the priority
- Long baseline neutrino meeting at CAP on June 3
- The second internal workshop on July 30-31
- JHF-SK proto-collaboration meeting on Sept.26-29
- NSERC grant request on the near detector R&D
- The third internal workshop in winter 2002

List of members

- Peter Kitching^{1,3,4} (Alberta)
- John Mcdonald^{1,4} (Alberta)
- Jim Pinfold^{1,2} (Alberta)
- Manuella Vincter^{1,2,3,4} (Alberta)
- Ian Lawson¹ (Guelph)
- David Hanna¹ (McGill)
- Tony Noble^{1,2,3} (Queens)
- Roman Tacik^{1,4} (Regina/TRIUMF)
- John Martin^{1,2,3} (Toronto)
- Pierre Savard¹ (Toronto)
- Garry Levman¹ (Toronto)
- Mike Barnes³ (TRIUMF)
- Ewart Blackmore^{1,3} (TRIUMF)
- Jaap Doornbos^{1,2,3,4} (TRIUMF)
- Peter Gumplinger^{1,3} (TRIUMF)
- Rich Helmer^{1,2,3,4} (TRIUMF)

- Robert Henderson⁴ (TRIUMF)
- Fred Jones¹ (TRIUMF)
- Akira Konaka^{1,2,3,4} (TRIUMF)
- Glen Marshal^{1,2,3} (TRIUMF)
- John Macdonald^{1,3} (TRIUMF)
- Chris Nell¹ (TRIUMF)
- John Ng^{1,2} (TRIUMF)
- Art Olin^{1,2} (TRIUMF)
- Marcello Pavan¹ (TRIUMF)
- Jean-Michael Poutissou^{1,2,3,4}(TRIUMF)
- Gary Wait³ (TRIUMF)
- Stan Yen^{1,3,4} (TRIUMF)
- Bob Kowalewski^{1,3} (Victoria)
- Sampa Bhadra^{1,2,3,4} (York)
- Scott Menary^{1,2,3} (York)

The numbers indicate that the person is on the following member list:

- 1. Subscribers of the Canadian long baseline neutrino group
- 2. Grantee of the international opportunity funds
- 3. Member of the JHF-SK proto-collaboration
- 4. Co-applicants of this NSERC SAP Project Research Grant

Canadian JHF-SK activities

- Invention of the off-axis beam idea (E889)
- Founding member of the JHF-SK project
 - * ν_e appearance analysis
 - * Introduction of the off-axis beam and simulation
 - * CP violation study
- Simulation analyses
 - * Near detector designs
 - * Optimization of the horn
- Facility contributions: model for int. contribution
 - * Primary beam optics design
 - * Novel dual kicker concept
 - * 50GeV accelerator leader's visit in March & September
 - R&D of the kicker (semiconductor switch)
 - R&D of the beam dynamics
 - * Hope to provide 1/3 of foreign contribution (\$50M/3) to maintain the foreign leadership role

Kicker/abort

- No fast abort in the original design (Urgent problem)
 - A novel dual abort kicker concept (TRIUMF,KEK)
 - Dual kicker will be constructed in 2004
- High power semiconductor switch
 - Essential in preventing spontaneous mis-firing
 - General interests in replacing thyratron (e.g. LC)
- Proposal by KEK to form a kicker R&D collaboration
 - Kicker design in FY2002-3 by KEK and TRIUMF
 - R&D of the switch at TRIUMF in FY2003
 R&D equipments to be funded by KEK
 - Construction in FY2004 in Japan
 - Test of the kicker elements in FY2004-5 at KEK and TRIUMF
 - Construction of the spare and upgrade kickers in FY2005-7
 - The collaboration beyond R&D is contingent upon fundings of the neutrino beamline and the TRIUMF 5year plan

• Cost and man power

- Total kicker capital cost: $$23M \Rightarrow TRIUMF \text{ share} \sim $11.5M$
- TRIUMF share could be paid by
 - * Funding the spare and upgrade kicker magnets
 - * Funding nomal conducting magnets for the ν beam line

Beam pick-up/damper

- Feed-back and correct beam instability Essential in achieving high intensity beam
- TRIUMF's experties in constructing the system:
 - Beam dynamics
 - Damper RF
 - Beam pick-up monitor
- Proposal by KEK to form a beam dynamics R&D collab.
 - Beam dynamics study of JHF in FY2002-3
 - Design study of the dumper system in FY2003-5
 R&D to be supported by KEK
 - Accelerator study and experiment in FY2006
 - Construction of the damper system in FY2006-7 by TRIUMF
 - TRIUMF to be involved in further intensity upgrades Higher repetition rate and injection manipulation
 - The collaboration beyond R&D is contingent upon fundings of the neutrino beamline and the TRIUMF 5year plan

• Cost and schedule

- Cost of the damper system $\sim 1M$ (2005-7)
- Future intensity upgrade contributions \sim \$1M (2008-9)

Primary beamline and shielding

- Impacts on the initial design studies
 - Initial beamline design studies by Doornbos
 - Scraper design studies important for SC magnets
 - Design studies of a 30GeV beamline
- Possible designing/consultation contributions
 - Shielding and handling of rad. hard elements
 - Target/horn design (E889-TRIUMF horn design)
- Contribution to the neutrino beamline magnets
 - -20 Q's (12kG, 1.6m) and 20 B's (20kG, 3.6m) in the arc
 - To be designed by KEK and constructed in Canada
 - Capital share of the kicker contribution

Near detector R&D and construction

• Fine grained calorimeter

- NSERC grant request for R&D
- Optimization of the detector config.
- Extruded scintillator+shifter fiber
- Photon readout system
- Mechanical design

• Contributions expected from TRIUMF

- Detector development and construction facility (LADD)
- DAQ/Electronics and detector groups
- Suport for the engineering design
- Beam test at TRIUMF

• Physics impacts

- Detailed measurements of the CC and NC cross sections
- Understand backgrounds for $\nu_{\mu} \rightarrow \nu_{e}$ appearance
- Estimate the normalization factor (Far/Near ratio)
- Background study for proton decay

• Cost and scheudle

- Schedule: 2003(R&D), 2004-6(construction)
- Cost: \sim \$5-10M (NSERC)

Item	FY2003	FY2004	FY2005	FY2006	FY2007	FY2008	FY2009
Kicker	1.0FTE	1.0FTE	1.0FTE	1.0FTE	1.0FTE	1.0FTE	0
	0	0	\$0.5M	\$1.0M	\$1.0M	\$0.5M	0
	R&D and test		tests	Upgrade/spare cons		struction	
Neutrino magnets	0.1FTE	0.1FTE	0.5FTE	0.5FTE	0	0	0
	0	0	\$3.5M	\$3.5M	0	0	0
	Design by KEK		Construction				
Beam dynamics	0.5FTE	0.5FTE	2.0FTE	3.5FTE	3.5FTE	3.0FTE	3.0FTE
	0	0	\$0.1M	\$0.3M	\$0.6M	\$0.5M	\$0.5M
	R&D and design		sign	study/construction		upgrades	
Total	1.6FTE	1.6FTE	3.5FTE	5.0FTE	4.5FTE	4.0FTE	3.0FTE
	0	0	\$4.1M	\$4.8M	\$1.6M	\$1.0M	\$0.5M

- R&D costs for the kicker and beam dynamics (damper system) in FY2003-4 would be supplied by KEK.
- Kicker man power includes contributions from students
- Neutrino magnets would be designed by KEK in consultation with TRIUMF

Item	FY2003	FY2004	FY2005	FY2006	FY2007	FY2008	FY2009
Near detector	0.5FTE	2.0FTE	1.5FTE	1.0FTE	1.0FTE	0.5FTE	0.5FTE
	0	\$0.1M	\$0.1M	0.1M	0	0	0
	R&D	$\operatorname{design/construction}$			upgrades		

- \bullet Detector R&D and construction cost is anticipated from NSERC
- Infrastructure support from LADD is anticipated
- TRIUMF contribution to part of the construction man power anticipated
- Support from NSERC infrastructure grant at Alberta is anticipated (subject to funding)

Summary

1. Neutrino oscillation, one of the few main future

- Identified by Canadian 5-year plan, HEPAP, ICFA, etc.
- Active field with new exciting results every few months
- The roadmap is clear: $\theta_{13} \to CP$ with superbeam
- Strong appeal to the public and students

2. JHF-Kamioka project is the front runner

- Right neutrino energy (0.5-1.0GeV) and distance (300km)
- Identified by the Canadian neutrino working group
- Recognized by the international community
- \bullet Funding of ν beamline expected in Dec. 2002 or 2003

3. Canadian visibility

- Japan (SuperK) and Canada (SNO) lead the field
- Order of magnitude smaller than collider experiments
 - \Rightarrow Bigger impact by the Canadian group
- Canadians have been involved from the very beginning
 - Off-axis beam idea
 - $-\nu_e$ appearance analysis
 - CP violation study
 - Primary beam transport and dual abort kicker

4. Excellent candidate for the TRIUMF 5-year plan

- Excellent and timely physics opportunity
- Good match with TRIUMF experties
- Support from Canadian subatomic physics community
- Highly visible and appealing to the public and students